Original paper

Why Ozone Therapy in Multiple Sclerosis?

Dr. Vincenzo Simonetti

Dr. William Liboni

Prof. Filippo Molinari

Abstract

Ozone (O$_3$), an allotrope of the Oxygen (O$_2$), is normally present in atmosphere and it preserves us from solar ultraviolet rays. It was used for first time like antiseptic during First World War. In ‘30 years Payr 82 extends its use to other diseases too. The same period it ascends the use of ozone for drinking in important citis, like Zurich, Marseilles, Singapore, Florence, Moscow, Konstanz.

It has been shown ozone has an immunostimulatory effect at low concentration (20-35 μg/ml), while it is immunosoppressive if it is used at high concentration (45-65 μg/ml) 60.

In 2002 Marx and Bardi 14 have demonstrated like in nature IgG execised a bactericidal action releasing O$_3$.

Keywords

Ozone therapy

Suggestion on how to quote this paper:

Rational of therapy

Ozone (O$_3$), an allotrope of the Oxygen (O$_2$), is normally present in atmosphere and it preserves us from solar ultraviolet rays. It was used for first time like antiseptic during First World War. In ‘30 years Payr 82 extends its use to other diseases too. The same period it ascends the use of ozone for drinking in important cities, like Zurich, Marseilles, Singapore, Florence, Moscow, Konstanz.

It has been shown ozone has an immunostimulatory effect at low concentration (20-35 μg/ml), while it is immunosuppressive if it is used at high concentration (45-65 μg/ml) 60.

In 2002 Marx and Bardi 14 have demonstrated like in nature IgG exercised a bactericidal action releasing O$_3$.

Numerous articles have largely described anti-inflammatory effects 34, analgesic 38, antibacterial 20,40-42,49,53,54,76,80, virus-static 17,27,66,67 and perfusion improvement of microcirculation 59, in addition to the subsequent disappearance of ischemic pain, the functional recovery of muscle and joint groups, the healing of trophic ulcers 62,64; these effects contribute significantly to improve the quality of patients’ life, to make the most effective many pharmacological or rehabilitation therapy, to repair some iatrogenic damages 15,16,19,36,48,58,65.

In a study that we presented to IV world congress oxygen ozone therapy Rome 26-28 September 2013, using NIRS technology (Near Intra Red Signal), we have shown in 50 patients (part of healthy part with varius brain disorders and with MS), an increase of activity on the signal of neurons cyt-c (Cytochrome-c-oxidase) 40 minutes after the end of reinfusion; it
demonstrates that ozon, activating mitochondrial metabolism with recovery of cyt-c in di brain reduces oxidative stress chronic. This effect was particularly evident in MS group due to the initial condition of hyper-oxidative stress and to lower levels of basal cyt-c. We believe that ozone may favor also the reduction of states of chronic oxidative stress at the basis of other neuro-vegetative diseases. The average values of cerebral oxygenation, measured by NIRS, are shown in the graph below. The NIRS technique allows measuring relative rather than absolute magnitude. Therefore, all the values reported, are reported at the initial monitoring, said “zero” instant.

![Graph showing mean values of relative concentration of O2Hb and HHb in the eight windows of protocol analysis to monitoring of long-term effects. The error bars represent the standard error.](image)

Figure 1 shows the time course of O2Hb and HHb concentration in the eight slots listed above. You can see how starting from the window V in particular (corresponding to 20 minutes after reinfusion), the concentration of oxygenates hemoglobin has a marked increase. Concentration of O2Hb in V window is the first to be statistically superior than in I window (initial baseline) (Student test, p < 0.05). The concentration of deoxygenated hemoglobin HHb is decreasing since the beginning of the protocol. Already in III window (beginning of reinfusion of oxygenated blood), concentration of HHb is statistically lower than baseline (p < 0.05).
Improving perfusion of the microcirculation allows optimization in the use of oxygen and glucose39, stimulates activation and disposal of catabolites, which accumulate that contribute to inflammatory noxa. Furthermore, Amato2 has shown that the hemoreologic properties of ozone43,68,77 are greater than those of pentossifilline. Insulin-dependent diabetic patients, already during cycle of MAT (= Major Autohemotherapy), often had to reduce the therapeutic dose of insulin and antihypertensive drugs.

Bocci and Sammartino3,6,10 have documented that ozone, in right doses, not only does not seem to induce side effects, but induce san activation of enzymes (catalasi, superoxidodismutasi, glutathione…) instructed to inactivate free radicals3,6,26. The final effect of activation of glutathione is reduction of disulfide bridges, with an effect of repairing proteins52.

Why Ozone Therapy in Multiple Sclerosis?
A decreased activity of antioxidant enzymes is present in renal failure (superoxide dismutase, catalase, glutathione peroxidase), followed by an inevitably oxidative stress and an increased inflammatory response⁸¹. The effects of antioxidants and anti-inflammatory hemoreologic of ozone help to improve the deficit situation described above⁷⁰,⁷⁶.

These results were crucial to stimulate us to experience the oxygen-ozone therapy as well as in vascular and degenerative diseases of the brain, even in autoimmune neurological disorders. The MAT bring significant clinical improvements, which allow a reduction, if not the suspension of corticosteroids and NSAIDs in patients with rheumatoid arthritis³³; clinical cure of recurring herpes skin infections in clinical particularly severe, a marked improvement in the pathology of asthma, such to allow a reduction of the load pharmacological.

In a study on the effect of ozone immunomodulatory published in 2001¹³, we have observed changes in lymphocyte subpopulations of 38 patients: results of particular interest are the data on the population examined 13 patients suffering from demyelinating disease and autoimmune (10 subjects with multiple sclerosis and 3 with rheumatoid arthritis). These patients were subjected periodically for 6 years in MAT. The analysis of the findings showed that T cells "helper / inducer" (subpopulation CD4 +), indicating adequate immune competence, were stable over time, and those related to activated T cells (subpopulation CD3 + HLA-DR +) were not increased.
Ohtsuka in 2006 showed that the ozone, at low concentrations, increases the ratio $\text{CD4}^+ / \text{CD8}^+$, because it stimulates the activity of T lymphocytes, whereas at higher concentrations leads to an increased production of anti-inflammatory cytokines, which is followed by a reduction of the CD14$^+$, which normally appear already reduced in inflammatory diseases as they are recruited by cytokines in the peripher$^5^7$.

Mezey and others have shown that stem cells from the bone marrow of adult animals transplanted in the brain of rats suffering from lymphoid leukemia, generate different types of brain cells, including endothelial cells, and white matter neurons, mainly in the hippocampus and cerebral cortex$^8^7$. According to some Bocci Lops induced by ozone would come up to the “substantia nigra”, by activating stem cells silent and it would cause the differentiation together with a up regulation of cellular synthesis of antioxidant enzymes, crucial for a rebalancing of the cellular redox system. Probably these effects are due to an increase in the release of dopamine and / or neuronal growth factors determined precisely by Lops$^8^6$.

The clinical efficacy of ozone therapy and found no side effects$^{2^8,3^0}$, instead often present in many other drug therapy protocols, the clear successes of pain symptoms muscle, joint, astheniform, intercurrent infections and lymphedema$^{1^2}$, we have driven to test the application of ozone therapy in patients with multiple sclerosis (MS), after informed consent of the patient.
Multiple sclerosis (MS) is a disease characterized by chronic inflammation and selective destruction of myelin in the central nervous system. The multifocal scarring typical of this disease are called plaques.

The incidence is 1/1,100 inhabitants. In Italy there are 54,000 patients and 1,800 new cases are diagnosed annually. The age of onset is between 15 and 50 years, most often between 20 and 30 years. In recent years we are seeing early even in subjects with more than 60 years. It is more common in women with a female / male ratio of 2:1. The most aggressive forms, however, are more common in men.

It is believed that the etiology is autoimmune, with a susceptibility determined by genetic and environmental factors such as viral infections, chronic poisoning by heavy metals and possibly a metabolic imbalance. In 2009, Prof Zamboni has speculated that an obstacle to the jugular venous outflow could be in correlation with the event and / or with the progression of MS. This hypothesis has been validated by several authors, but has not yet shared by many neurologists. We have noticed an obstructed outflow of the jugular veins in over 80% of the patients examined. As the venous defect is not the same in all patients, nor by extension or by type, we believe that percutaneous balloon angioplasty alone may not be sufficient to correct the flaw of all. In fact, we found small valvular thickening, hypoplasia more or less extensive,
markets and abnormal bifid into the subclavian... there seems to justify the clinical improvements, often not lasting after percutaneous angioplasty simple: you have to search for vascular surgical techniques and prosthetic materials other than those used so far. Remains to be seen whether the slow flow of the jugular is a cause, contributing cause or consequence of inflammatory disease brain.

As far as genetic predisposition, have been observed more than 140 mutations of genes: it seems that the mutation loci IL7R and IL2R (receptors for interleukins 7:02 respectively), increase by 30% the risk of developing the disease. This would explain the nature of the immune pathology, since the IL7R is involved in the activity of regulatory T cells, capable of suppressing the immune response. IL2R, however, facilitate the expression of MS, but I diabetes and autoimmune thyroiditis. It has been demonstrated the presence of Epstein Barr virus in all plaques at autopsy from patients with multiple sclerosis. Moreover, it seems also involved Herpes virus type 6A in relapsing-remitting.

In most cases, the MS starts with recurrent attacks of focal neurological dysfunction, which may last weeks or months, with a subsequent recovery of variable degree. In other cases, the disease presents with a slowly progressive neurological deterioration. Stressful conditions lead to a worsening of symptoms.

The manifestations are variable and include: weakness and / or sensory symptoms affecting a limb, visual difficulties, abnormal gait and coordination, urinary urgency or frequency, important asthenia. The most common sensory disturbances are localized paresthesias , sensations of " needle puncture " or " falling asleep " of a limb. Optic neuritis may cause fogging or blurring of vision , often associated with pain retro orbital. The involvement of the brain stem can cause diplopia , nystagmus , dizziness, facial pain, facial numbness and weakness , emispasmo or myokymia . The cerebellar involvement instead causes ataxia, tremor and dysarthria . The symptom of Lhermitte , ie a feeling of electric shock due to the flexion of the neck , is due to involvement of the cervical cord.

MS is a chronic disease. After about 15 years after diagnosis 20% of the cases has not functional limitations, in about half of patients the disease has progressed to secondary progressive MS with a need for assistance in walking.

For the purposes of diagnosis are needed medical history, neurological examination and magnetic resonance imaging of the brain. They are certainly useful for a differential diagnosis evoked potentials and examination of the cerebrospinal fluid. There are 4 types of MS:

1) relapsing-remitting MS: recurrent attacks of neurological dysfunction with or without recovery. Not observed between the progression of neurological attacks
2) secondary progressive, starting with a picture of relapsing-remitting MS, but evolves gradually progressive
3) progressive primitive gradual progression of disability from the outset, affects approximately 15% of cases
4) progressive-relapsing: rare form that begins with progressive trend of primitive type, with subsequent occurrence of relapses
With regard to our series from 1996 to now, we have treated 43 MS patients including 23 progressive relapsing-remitting and 11 primary / secondary. Our end point was:

1) reduction of pain resulting from spasticity and / or postural changes
2) improvement of the sleep-wake rhythm
3) functional improvement of microcirculation venous lymphatic compromised by alterations in neuro-vegetative regulation and postural
4) improvement of neuro-vegetative functions and sphincters' control
5) slowing in the progression of the disease
6) improvement of kinesthetic
7) favorable influence on the timing of remission of pousses (especially short if treated within 72 hours of onset)
8) clinical cure urgent urination

It should be emphasized that the most obvious results were obtained in patients with relapsing-remitting MS, and were more nuanced in those suffering from a progressive primary / secondary, characterized by chronicity of symptoms and relief of major changes in the brain parenchyma and medullary. This improvement is manifested clinically by a recovery more or less evident depending on the severity, depending, that is, if the inflammatory lesion is still confined to the white matter or gray matter interest already, and chronicity of the disease state reached.

The clinical observations of patients treated enable us to state that the current tables of disability (FIM Ashwort ...) do not provide for the gradual enough to highlight the benefits of ozone, which also appear to significantly improve the quality of life of patients. Our clinical results are consistent with the proposed objectives.
PROTOCOL

• Indications: relapsing-remitting MS
• Contraindications: pregnant women (there are no studies on the possible teratogenicity effects of ozone), hyperthyroidism, deficiency of glucose-6-phosphate dehydrogenase.
• Interactions: not known interaction with other drugs
• Pharmacological action: anti-inflammatory and immunomodulatory effects, muscle relaxant, improving perfusion of the microcirculation, activation of the mitochondrial antioxidant system, making it much more effective drug therapies or rehabilitation as it improves both the use and metabolism, while also allowing them a dose reduction, and the ability to repair some iatrogenic damage. The reduction of spasticity and pain associated with the improvement of the autonomic functions and sphincter control, improving kinesthetic, reducing the time to remission of pousses and slowing the progression of the disease, involving a significant improvement in quality of life of these patients.
• Side effects: It is not nephrotoxic, hepatotoxic or not cardiotoxic, does not induce tumors or other metabolic disorders, does not increase the risk of thrombosis, it is not allergenic and does not induce the formation of autoantibodies. The only side effects, in addition to those due to the needle puncture, can be consequent to emotional causes (vaso-vagal reflexes).
• Twenty MAT, 2/week, 120-240 gr + blood Ozone-Oxygen 120-240ml / 40-55mcgr/ml followed by 1 session every 50-60gg. In case of POUSSE: immediately MAT every 2 days until disappearance of symptoms POUSSE

CONCLUSIONS

The Ozone, because of its actions referred to above, is a valid therapy for the pathophysiological changes and symptoms in the MS where it can make a significant improvement in the quality and expectancy of life, with no side effects and low cost therapeutic intervention. We believe that his association with the commonly used treatment protocols may improve clinical outcomes with a lower incidence of side effects. In addition, ozone therapy could represent a real therapeutic alternative for patients who can not be subjected to traditional drug treatment.

REFERENCES

1) Amato G. Valutazione dell’efficacia dell’ozonoterapia nel trattamento delle flebopatie degli arti inferiori. Impiego Ospedaliero - sezione scientifica 1992

2) Amato G. Valutazione dell’efficacia dell’ozonoterapia nelle arteriopatie croniche ostruttive degli arti inferiori: confronto con la terapia con Pentossifillina. Acta Toxic Ther, 1996;17:2-3

7) Raso A. Manuale di medicina e chirurgia vascolare. Ed Minerva Medica 1990

8) Riva Sanseverino E. Effects of oxygen-ozonotherapy on age-related degenerative retinal maculopathy. Panminerva Medica 1990; 32:77-84

9) Rokitansky O. Ossigeno-ozonoterapia nelle arteriopatie. Atti II congresso nazionale di ossigeno-ozonoterapia – Bergamo 19/10/’85

28) Bocci V. Is it true that ozone is always toxic? The end of a dogma. Toxicol Appl Pharmacol 2006; 216(3):493-504

30) Bocci V. Ozone as Janus: this controversial gas can be either toxic or medically useful. Mediators of Inflammation 2004; 13(1):3-11

31) Bocci V. Ozonetherapy as a possible biological response modifier in cancer. Forsch Komplementarmed (Research in Complementary Medicine) 1998; 5:54–60

35) Chuprunova IN. Osteoplasty and ozone therapy in the treatment of a severe degree of generalized periodontitis. Stomatologiiia (Mosk) 1996; Spec No:90-1

40) Daulbaeva AA, Baïzakova GT. Effect of ozone on antibiotic sensitivity of microorganisms. Stomatologiiia (Mosk) 2003; 82(2):36-8

47) Kiniapina ID, Durnovo EA. The efficacy of using ozone in the combined treatment of disseminated odontogenic phlegmons of the maxillofacial area. Stomatologiya (Mosk). 1996;Spec No:60-1

61) Romero A, Menendez S, Gomes M, Ley J. La ozonoterapia en los estadios avanzados de la aterosclerosis obliterante. Angiologia 1993;45:146-8

66) Sunnen GV. Hepatitis C and Ozone therapy. Ozone in Medicine,2001

67) Sunnen GV. Possible meccanism of viral inactivation by ozone. Ozone in Medicine,1994

78) Vasil'ev IT, Markov IN, Mumladze RB, Belopol'skii AA, Vasina TA. The antibacterial and immunocorrective action of ozone therapy in peritonitis. Vestn Khir Im I I Grek 1995; 154(3):56-60

83) Bollettino d’informazione sui farmaci, n. 2, 2007

84) www.farmaciaonline.it

85) European Medicines Agency (EMEA), 5-2006

Why Ozone Therapy in Multiple Sclerosis?

91) Khan OA, Tselis AC, Kamholz JA, Garbern JY, Lewis RA, Lisak RP. A prospective, open-label treatment trial to compare the effect of IFN beta-1a (Avonex), IFN beta-1b (Betaseron), and glatiramer acetate (Copaxone) on the relapse rate in relapsing-remitting multiple sclerosis. Eur J Neurol 2001;8(2):141-148

100) Yamout B. Extracranial venous stenosis is an unlikely cause of Multiple Sclerosis Mult Scler 2010 Nov.;16:1341